ALVERTON CALCULATION POLICY - MULTIPLICATION

EYFS/Year 1	Year 2	Year 3
Counting in 2s, 5s and 10s. Find doubles to double 6 using fingers.	Counting in 2s, 5s and 10s. Begin to know doubles of multiples of 5 to 100.	Count in 2s, 3s, 4s, 5s 8s and 10s. Find doubles to double 50. Use partitioning to double numbers. Eg 18 x 2 = 10 x2 + 8 x 2
Repeated grouping/repeated addition 3×4 $4 + 4 + 4$ There are 3 equal groups, with 4 in each group.	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5 = 5 \times 2$ 2 lots of 5 5 lots of 2	Formal column method with place value counters (base 10 can also be used.) 3×23
Children to represent the practical resources in a picture and use a bar model.	Children to represent the arrays pictorially.	Children to represent the counters pictorially. 10s Is 00 000 00 000 6 9

$3 \times 4 = 12$	Children to be able to use an array to write a range of calculations e.g.	This leads onto the grid
4 + 4 + 4 = 12	10 = 2 × 5	method
	5 × 2 = 10	
	2 + 2 + 2 + 2 + 2 = 10 10 = 5 + 5	
	10 - 3 + 3	
Repeated jumps on number line		Show the links with arrays to first introduce
Moving to jumps on unmarked number line		the grid method.
home and done in O. C. and 10.		x 10 3 4 rows of 10
Jumps only done in 2s 5s and 10s		4 rows
2 2 2 2 2 0 1 2 3 4 5 6 7 8 9 10 11 12		Children can represent their work with place value counters in a way that they understand.
		They can draw the counters using colour to
		show different amounts or just use the
		circles in the different columns to show their
		thinking.
		$\begin{array}{c c} 24 \times 3 = 72 \\ \times & 20 & 4 \end{array}$
		3 00 0000
		00 000
		60 1 4
		+ 12

ALVERTON CALCULATION PO	OLICY - MULTIPLICATION		
	addition alongside.		
	× 30 5		
	7 210 35		
	210 + 35 = 245	210 + 35 = 245	

ALVERTON CALCULATION POLICY - MULTIPLICATION

Recap grid method

Begin with multiplying by one digit numbers and showing the clear addition alongside.

Year 4

×	30	5
7	210	35

$$210 + 35 = 245$$

Year 5

The grid method can then be progressed onto the compact method.

Remind children that the single digit

Year 6

belongs in the ones column. Line up the decimal points in the question

and answer.

Moving forward, multiply by a 2 digit number, showing the different rows within the grid method.

When appropriate, children can use their place value knowledge to make the number being multiplied 10, 100 or 1000 times bigger and then multiply and make the answer 10, 100 or 1000 times smaller.

$$\begin{array}{c}
319^{(x100)} \\
x \quad 8 \\
\hline
2552^{(+100)} = 25.52
\end{array}$$

The grid method can then be progressed onto the compact method.

$$0.22 \times 0.08 = 0.0176$$
 $\begin{array}{c|cccc} \times 10 & & \times 10 \\ \times 10 & & & \times 10 \\ \hline & & \times 10 & & \times 10 \\ \hline & & & & & \times 10 \\ \hline & & & & & \times 10 \\ \hline & & & & & \times 10 \\ \hline & & & & & \times 10 \\ \hline & & & & & \times 10 \\ \hline & & & & & & \times 10 \\ \hline & & & & & & \times 10 \\ \hline & & & & & & \times 10 \\ \hline & & & & & & \times 10 \\ \hline & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & & & & \times 10 \\ \hline & & & & & & &$