ALVERTON CALCULATION POLICY - DIVISION

EYFS/Year 1

Count in 2 s and 10 s.
Find half of even numbers up to 12.

Sharing using a range of objects.
$6 \div 2$

Represent the sharing pictorially

$6 \div 2=3$
3
3
Children should also be encouraged to use their 2 times tables facts.

Year 2
Year 3

Counting in 2, 5, 10.

Count in 2, 3, 4, 5, 9 and 10.
Find half of even numbers to 100 by partitioning finding half of
multiples of 10 .

Use of arrays as a pictorial representation for division. $15 \div 3=5$ There are 5 groups of 3 . $15 \div 5=3$ There are 3 groups of 5

Children should be able to find $\frac{1}{2}$ and $\frac{1}{4}$ and simple fractions of objects, numbers and quantities.

Division as Grouping and Sharing

Jumps in groups on number line

Grouping

How many 6's are in 30?
$30 \div 6$ can be modelled as:

$2 \mathrm{~d} \div 1 \mathrm{~d}$ with remainders using lollipop sticks. Cuisenaire rods, above a ruler can also be used
$13 \div 4$

Use of lollipop sticks to form wholes- squares are made because we are dividing by 4 .

There are 3 whole squares, with 1 left over.

Children to represent the lollipop sticks pictorially.

There are 3 whole squares, with 1 left over

Divide quantities into equal groups.
Use cubes, counters, objects or place value counters to aid understanding.

Sharing using place value counters.
$42 \div 3=14$

\section*{| esese | esese | enese | enese | enese | enese |
| :--- | :--- | :--- | :--- | :--- | :--- |}

Children to represent repeated subtraction pictorially.

Abstract number line to represent the equal groups that have been subtracted.

ALVERTON CALCULATION POLICY - DIVISION

Year 4

Count in $2,3,4,5,6,7,8,9,10,11,12,25,50,100$
Find half of even numbers to 200.
Begin to halve amounts of money.
Short Division with and without remainders
Short division using place value counters to group:

$$
615 \div 5
$$

Represent the place value counters pictorially.

Year 5

Introduction to long division through chunking.

	$830 \div 25$	
Step 1	10×25 (250)	$\begin{array}{r}830 \\ -250 \\ \hline\end{array}$
		$=580$
Step 2	10×25 (250)	$\begin{array}{r} 580 \\ -250 \end{array}$
		$=330$
Step 3	10×25 (250)	330 -250
		=80
Step 4	3×25 (75)	$\begin{array}{r}80 \\ -75 \\ \hline-7\end{array}$
		$=5$
Answer	33 r 5	

Formal Written Methods

Continued as shown in Year 4, leading to the efficient use of a formal method. The language of grouping to be used (see link from fig. 1 in Year 4) E.g. $1435 \div 6$

Children begin to
practically develop their understanding of how express the remainder as a decimal or a fraction. Ensure practical understanding allows children to work through this (e.g. what could I do with this remaining 1? How could I share this between 6 as well?)

Year 6

Children will continue using formal short division expressing the remainder as a decimal.

Children can then progress onto expressing the remainder as fractions (e.g. 5/8) and decimals (e.g. 663.625).
$846 \div 4$

Children to the calculation using the short
division scaffold.

123
 5615

When dividing by a 2 -digit number they will either continue to refine their chunking (repeated subtraction) or move on to formal long division (Mike's group)

Begin by modelling method with a 1-digit divisor:

Divide :	
Multiply :	$\sqrt[5]{3} \frac{2}{74}$ $6 \rightarrow 3 \times 2$ tens $=60$ tens.
Subtract :	$\begin{aligned} & \begin{array}{l} \frac{2}{34} \\ \frac{-6}{1} \rightarrow \\ \text { Subtracting } 6 \text { tens } \\ \text { from } 7 \text { tens } \end{array} \end{aligned}$
Bring down :	$\begin{aligned} & 3 \longdiv { 7 4 } \\ & \stackrel{2}{-\frac{6 \downarrow}{14}} \rightarrow 1 \text { ten } 4 \text { ones }=14 \text { ones } \end{aligned}$
Repeat or find the Remainder :	$\begin{aligned} & \stackrel{24 \rightarrow}{\substack{24 \\ 34}} \begin{array}{l} \text { Dividing } 14 \text { ones by } 3, \\ \text { we get } 4 \text { ones and } \\ -\frac{6}{44} \\ \text { some extra. } \end{array} \\ & -\underline{12} \rightarrow 3 \times 4 \text { ones }=12 \text { ones. } \\ & \underline{2} \rightarrow \text { Remainder } \end{aligned}$
Check :	Check your answer: Dividend $=$ Divisor \times Quotient + Remainder

$$
\begin{array}{r}
5 \longdiv { 2 5 . 2 } \\
\frac{126.0}{-10} \\
\frac{26}{-25} \\
10 \\
-10 \\
\hline 0
\end{array}
$$

When there is a remainder which you need to write as a decimal, bring down the 0 in the from then tenths column, and repeat the process as before.

